Nevşehir Hacı Bektaş Veli University Course Catalogue

Information Of Programmes

FACULTY OF LETTERS & SCIENCE / MAT202 - MATHEMATICS

Code: MAT202 Course Title: ANALYSIS IV Theoretical+Practice: 5+0 ECTS: 7
Year/Semester of Study 2 / Spring Semester
Level of Course 1st Cycle Degree Programme
Type of Course Compulsory
Department MATHEMATICS
Pre-requisities and Co-requisites None
Mode of Delivery Face to Face
Teaching Period 14 Weeks
Name of Lecturer NECDET BATIR (nbatir@nevsehir.edu.tr)
Name of Lecturer(s)
Language of Instruction Turkish
Work Placement(s) None
Objectives of the Course
In this lesson, learn the issue of derivatives and is scheduled to give some physical applications.

Learning Outcomes PO MME
The students who succeeded in this course:
LO-1 Derivatives in any direction, the Taylor expansion of functions of two variables are learnt. PO-
LO-2 Fundamental theorem of surface integrals are known PO-
LO-3 Know the geometric meaning of partial derivatives. PO-
PO: Programme Outcomes
MME:Method of measurement & Evaluation

Course Contents
Region transformations, Region transformations, Vector space and deometric meaning of partial derivations, Duble integral and defininte integral, Fubuni theorem, Region transformation in double integrals and applications, Volume calculations and applications, Triple integral and defininte integral, Reagion transformation in triple integrals and applications, Curvilinear integral and basic theorms, Curvilinear integral and applications, Surface integral and integrals on directional surfaces, Surface integrals and basic theorems, Surface integrals and applications
Weekly Course Content
Week Subject Learning Activities and Teaching Methods
1 Region transformations Oral representation, questioning and answering
2 Functional dependency Oral representation, questioning and answering
3 Vector space and deometric meaning of partial derivations Oral representation, questioning and answering
4 Double integral and defininte integral, Fubuni theorem Oral representation, questioning and answering
5 Region transformation in double integrals and applications Oral representation, questioning and answering
6 Volume calculations and applications Oral representation, questioning and answering
7 Triple integral and defininte integral Oral representation, questioning and answering
8 mid-term exam
9 Reagion transformation in triple integrals and applications Oral representation, questioning and answering
10 Curvilinear integral and basic theorms Oral representation, questioning and answering
11 Curvilinear integral and applications Oral representation, questioning and answering
12 Surface integral and integrals on directional surfaces Oral representation, questioning and answering
13 Surface integrals and basic theorems Oral representation, questioning and answering
14 Surface integrals and applications Oral representation, questioning and answering
15 Preparation fom final exam Oral representation, questioning and answering
16 final exam
Recommend Course Book / Supplementary Book/Reading
1 matematik analiz, mustafa balcı
Required Course instruments and materials
[1] Berki Yurtsever, (1978) Mathematics Aanalysis Course, Diyarbakir University Science Faculty Publications. [2] H. Halilov, A. Hasanoglu, M. Can,(1999),High Mathematics, Litaratür Publications [3] M. Balci,(1997) Mathematics Analysis -2, Balci Publications

Assessment Methods
Type of Assessment Week Hours Weight(%)
mid-term exam 8 40
Other assessment methods
1.Oral Examination 4 2
2.Quiz
3.Laboratory exam
4.Presentation
5.Report
6.Workshop
7.Performance Project
8.Term Paper
9.Project
final exam 15 60

Student Work Load
Type of Work Weekly Hours Number of Weeks Work Load
Weekly Course Hours (Theoretical+Practice) 5 5 25
Outside Class
       a) Reading 3 10 30
       b) Search in internet/Library 1 13 13
       c) Performance Project 0
       d) Prepare a workshop/Presentation/Report 0
       e) Term paper/Project 4 10 40
Oral Examination 4 10 40
Quiz 4 10 40
Laboratory exam 0
Own study for mid-term exam 2 2 4
mid-term exam 2 1 2
Own study for final exam 4 2 8
final exam 3 1 3
0
0
Total work load; 205